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Abstract. We have investigated the shot noise affected by the perturbation of two microwave fields (MWFs)
with frequencies ω1 and ω2, which can be classified as the commensurate and incommensurate external
ac fields. The time-dependent current correlation function and the spectral density of shot noise have
been obtained. They are very different compared with the single-field applied system in the nonlinear
regime of the ac potentials. The different photon absorption and emission processes induce different kinds
of noise spectral density. We have performed the numerical calculations for both commensurate balanced
and unbalanced photon absorptions and emissions. The multi-photon procedure can be seen clearly from
the resonance of shot noise. Different commensurate number q = ω2/ω1 contributes to different photon
absorption and emission behaviors. It is found that the asymmetric configuration of shot noise is intimately
associated with the commensurate number q. The differential conductance appears symmetric and asym-
metric behaviors, and the channel blockade exhibits. The shot noise is large enough to surpass its saturated
value for the unbalanced photon absorption case. The sensitive behaviors of Fano factor associated with
different commensurate numbers and amplitudes of ac fields signify that the shot noise can be controlled
by external MWFs significantly.

PACS. 72.10.Bg General formulation of transport theory – 73.21.La Quantum dots – 73.23.-b Electronic
transport in mesoscopic systems – 85.35.-p Nanoelectronic devices

1 Introduction

The development of nanotechnology stimulates the inves-
tigation of ultra-small devices theoretically and experi-
mentally. On one hand, to explore the new physics we
develop necessary theoretical techniques and approaches.
On the other hand, the theoretically revealed physical fea-
tures on the nanostructure are used for designing new elec-
tronic devices. The phase coherence plays crucial role in
electronic transport through such small systems because
the dimensions of these devices are smaller than or com-
parable with the phase coherence lengths. Due to the in-
terferences of electron wave packets, the quantum effects
appear clearly at low temperature. For new devices in the
electronic circuit and equipment, it is important to study
their characteristics in order to control the output signals
through changing the external parameters.

From the practical point of view, the devices are usu-
ally operated in the presence of radio frequency electro-
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magnetic fields or microwave fields (MWFs) for control-
ling the tunneling behaviors of the charge carriers [1,2].
The ac perturbations can give rise to very interesting phe-
nomena, such as photon-electron pumping effect related
to Rabi oscillation between the states of double quantum
dot (QD) mesoscopic system [3]. For this reason the study
of the influences of ac fields on the transport properties
in nanostructures has become an increasingly interesting
subject [4–12]. The pioneer work on the photon-assisted
tunneling was performed by Tien and Gordon in 1960s
for studying the photon absorption and emission effect
in superconducting tunneling devices [13]. The perturba-
tion of MWF induces side-band E + n�ω to modify the
energy level E, and the tunneling electrons may absorb
(n > 0) and emit (n < 0) photons. The observation of
photon-assisted tunneling was achieved by Kouwenhoven
et al. to find transport features with a linear frequency de-
pendence in a QD system [1]. The electrons can overcome
the Coulomb gap in the QD when the discrete photon
energies are absorbed from the applied microwaves [14].
Although the theoretical model is chosen as a single-level
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QD without considering the Coulomb interaction [7], the
shape and structure of the photon-assisted tunneling are
in good agreement with the experiment stated in refer-
ence [1]. The photon-electron quantum pumps have been
investigated intensively during the past decades due to ap-
plying alternating voltages to produce nonzero direct cur-
rent [15–19]. The various methods are employed for treat-
ing the time-dependent transport, such as time-dependent
Schrödinger equation relating to the Floquet theory [11],
the master equation [4,20,21], the nonequilibrium Green’s
function (NGF) technique [5–8,22,23], the random matrix
theory [24], and the scattering matrix [8,25].

In mesoscopic systems, high-frequency and strong
ac fields usually may produce nontrivial quantum ef-
fects, which should be treated by nonadiabatic approach.
The nonlinear behaviors are expected to display novel
physics and structures associated with tunneling current
and frequency-dependent conductance. In studying time-
dependent mesoscopic systems, the NGF approach pro-
vides us a very convenient way to deal with the non-
linear transport. It also allows us to solve the problems
self-consistently beyond elastic scattering. This method
is suitable for the systems associated with the experimen-
tally measurable nonadiabatic mesoscopic transport as the
frequencies of the applied fields reach tens of THz [22].

The shot noise is a nonequilibrium fluctuation which
is caused by the discreteness of the charge carriers [25,26].
The momentum noise of barriers in the single-channel
approximation by using a second quantization [27], the
quasi-classical discussion of fluctuation with a view of bal-
listic transport [28] have been investigated. When the size
of an electronic system reaches the nanometer scale, noise
becomes a very interesting problem. As the sample gets
smaller, its charging energy increases and eventually be-
comes larger than the thermal energy. Electrons traveling
through a device become correlated in the same channel
and same probe, as well as in different channels and dif-
ferent probes. In a macroscopic system, the generalized
Nyquist current noise spectral density is related to the
conductance. But in a mesoscopic system, this relation
is valid only in very special conditions. Büttiker et al.
used a scattering theory to study the dynamic conduc-
tance and shot noise at low-frequency, and obtained in-
teresting results on these quantities [8,9,25]. Given the
fact that the mesoscopic ac conductance has been exten-
sively studied, the shot noise induced by the ac fields needs
further investigation. During past years, the frequency de-
pendence of noise spectrum has been studied by several
authors [21,29–33] through different approaches for differ-
ent systems. The excess noise in a quantum conductance
in the presence of constant and alternating external fields
has been studied to exhibit the singular dependence on
the dc voltage and ac frequency [34]. The investigation on
the deviations from the purely Poissonian shot noise in
mesoscopic systems has been an increasingly interesting
subject. For Poissonian distribution in a macroscopic sys-
tem the current shows the value of shot noise by the well-
known Schottky formula SP = 2e〈I〉. However, for a meso-
scopic system, the electrons are correlated due to coherent

transport, and they are governed by the Fermi distribu-
tion and Pauli principle. This quantum behavior results
in the deviation of shot noise to the Poissonian distribu-
tion. The suppression [35–37] and enhancement [38–40] of
shot noise have been discussed with different physical ori-
gin. Negative correlations between current pulses can lead
to a complete suppression of the shot noise in quantum
point contacts. From the investigation of noise in meso-
scopic systems we can obtain additional information due
to the interference of tunneling currents which is absence
in the conductance. The transporting electrons in the per-
turbation of ac fields are highly correlated in time, the
incident and outgoing electrons interfere with each other
to induce very interesting physical phenomena. This also
allows us for a better understanding electron transport in
mesoscopic devices from the converse version.

This paper investigates the shot noise in a mesoscopic
system under the perturbation of external ac fields, due
to the microwave fields irradiating to the central QD. We
are interested in the ac interference of current correla-
tions induced by the two perturbations. We first derive the
tunneling current operator, and then we derive the time-
dependent current-current correlation. The noise spectral
density is obtained by taking Fourier transformation. The
novel features arise from the interference between different
branches of currents, this in turn affects the shot noise of
the system perturbed by the double MWFs. The informa-
tion of MWFs is transferred to the tunneling currents, and
therefore to the current noise. The selection rule is found
from considering the energy conservation associated with
photon absorption and emission procedures during elec-
trons transport through the system. It is found that sev-
eral procedures may exist in the double MWFs irradiated
system, which is related to the commensurate (the two
frequencies are commensurable) and incommensurate (the
two frequencies are incommensurable) fields. In the liter-
atures, one can find the two-signal perturbation systems
associated with the investigation of tunneling current in
the quantum pump [18,19], and photon-assisted current
interference effect [41]. The frequencies of the perturbed
fields can be divided into the commensurate and incom-
mensurate cases, and the perturbations of different fields
result in considerable different features of tunneling cur-
rent and conductance. The main reason of the particular
behaviors is arisen from the branch interference of elec-
trons due to absorbing photon energies. This situation is
most important for the nonlinear photon-assisted electron
transport due to multi-photon absorption and emission
procedure. One can imagine the case that electrons trans-
porting through a mesoscopic system keep their phase co-
herence in the absence of external ac field. However, this
coherence is broken down temporally due to absorbing
and emitting photons when a single ac field is applied. On
time average, the absorbed and emitted photons from the
field satisfies energy conservation, and therefore we obtain
the coherent electron transport to produce nonzero stair-
like photon-assisted dc current. On the other hand, if we
apply two commensurate fields, i.e., the frequency ratio
number ω2/ω1 = q is an integer, the phase coherence is
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broken down temporally and more heavily due to absorb-
ing and emitting of photons from the different fields. On
time average, we also obtain the coherent electron tun-
neling since the electrons absorbing and emitting photons
from the two fields keep energy conservation. This means
that the absorbed photons from one field may be emit-
ted to the other field, and the total number of the ab-
sorbed and emitted photons keeps unchanged by taking
time-average. As a result, the compound effect of the tun-
neling current induced by the commensurate fields causes
nontrivial transport behavior, and the novel features may
exhibit through current and conductance, as well as the
spectral density of noise. From the energy structure of the
system, we find that some of the side-channels may over-
lap for the commensurate case, while we can not find the
overlapping of side-channels for the incommensurate case.
The main new results of this paper are listed in the fol-
lowing three aspects. (1) The asymmetric configuration of
shot noise is intimately associated with the frequency ra-
tio number (commensurate number)q. The shot noise is
large enough to surpass its saturated value for the unbal-
anced photon absorption case. (2) For the case with q = 1,
the differential conductance appears symmetric behavior,
and the channel blockade exhibits due to the multi-photon
absorption procedure. However for the case where q > 1,
the peak suppression and enhancement induce asymmet-
ric nonlinear differential conductance. (3) The sensitive
behaviors of Fano factor associated with different com-
mensurate number q and amplitudes of ac fields signify
that the shot noise can be controlled by external MWFs
significantly.

The paper is organized as the follows. The theoreti-
cal formalism is laid down in Section 2 where the time-
dependent current-current correlation, and the shot noise
spectral density are derived. The obtained formulas as the
current operators, time-averaged current formula, and the
spectral density of noise can be found in this section. Here
we are interested in dealing with the double-signal per-
turbed system in the regime of nonlinear and nonadiabatic
multi-photon procedure. Section 3 shows the numerical
calculations of shot noise and Fano factor for the com-
mensurate MWFs perturbation. The double-field pertur-
bation results in novel features through numerical calcula-
tions, such as the photon blockade effect. The last section
contributes to the concluding remarks.

2 Hamiltonian and formalism

The system we considered is composed of three subsys-
tems: the double-barrier QD, the left and right leads con-
nected to two equilibrium electron reservoirs. The two
leads are biased by a dc voltage V . The difference of
chemical potentials µL and µR relates the voltage by
eV = µL − µR, where the voltage is not necessarily small.
The QD is irradiated with two MWFs through the gate of
QD. The application of MWFs can be expressed by the po-
tentials eVj cos(ωjt) (j = 1, 2) if the fields are introduced
periodically in the dipole approximation. The tunneling
electrons carry the information of the external MWFs,

and the interference of currents induces nontrivial behav-
iors associated with the nature of MWFs. We assume that
the fields are finite for Vj and ωj in general, and nonlinear
effect may exist in the system as the voltages are large.
The frequencies of the fields can reach THz associated
with nonadiabatic phenomena [22]. Experimentally, such
high frequency applied photon-assisted tunneling has been
observed by Guimarães et al. through choosing the free-
electron lasers as the source of terahertz electric fields [42].
Generally, the Coulomb interaction U exists in the elec-
tron system, and the interaction becomes stronger as the
sample becomes smaller. However, we can restrict our in-
vestigation to consider the tunneling in the neighborhood
of a single Coulomb oscillation peak [31,43,44]. The the-
oretical consideration on this restriction can be described
by a single channel QD model approximately as long as
the measurement of the voltages and photon energies are
much smaller than the level space and Coulomb interac-
tion U , i.e., �ωi � ∆E1 < U , where ∆E1 is the energy
space between the first and second energy levels of QD.
The experimental observation for the physics around this
level can be achieved by detecting the tunneling behaviors
and noise near this energy region.

In order to grasp the essential feature of the double-
field induced nonlinear multi-photon behaviors, we
employ the simple model without Coulomb interaction.
The Hamiltonian of the QD system with two MWFs
applying to the QD can be written as

H =
∑

γ∈{L,R}

∑

kσ

Eγ,ka†
γ,kσaγ,kσ +

∑

σ

εd(t)d†σdσ

+
∑

γ∈{L,R}

∑

kσ

(
Rγka†

γ,kσdσ + H.C.
)
, (1)

where εd(t) = Ed+
∑2

i=1 eVi cos(ωit), and Ed is the energy
level of an electron in the QD for our spin degenerate
system. Vi and ωi represent the magnitude and angu-
lar frequency of the ith field. Eγ,k represents the energy
level of an electron in the γth lead. a†

γ,kσ, and aγ,kσ de-
note the creation and annihilation operators of electron
in the leads. d†σ, and dσ are the creation and annihila-
tion operators of electron in the QD. The electrons in
the QD are coupled to the electrons in the leads by tun-
neling strengths Rγk. This model describes the situation
that two microwave signals are applied simultaneously
to the quantum device through gate. The tunneling cur-
rent is affected by the two fields, and the modulation of
MWFs gives rise to perturbation terms in QD. In order
to proceed the derivation conveniently, we make a gauge
transformation over the Hamiltonian. This gauge trans-
formation can be achieved by taking the transformation
over the wavefunction of the system as Ψ(t) = Û(t)Ψ̃(t),
where the unitary operator is determined by Û(t) =
exp[−i

∑
σ

∑2
j=1 λjd

†
σdσ sin(ωjt)]. We have defined the

scaled magnitudes of the MWFs by λj = eVj/�ωj. Due
to this transformation, the time-dependent term is can-
celed from the energy εd(t). However, the Schrödinger



332 The European Physical Journal B

equation changes to i�∂Ψ̃(t)/∂t = H̃Ψ̃(t), where H̃ =
Û(t)−1H ′Û(t), and H ′ is the Hamiltonian associated with
equation (1), but without the time-oscillation energy. To
obtain the explicit form of the Hamiltonian H̃, we note
the relations dσÛ(t) = exp[−i

∑2
j=1 λj sin(ωjt)]Û (t)dσ,

d†σÛ(t) = exp[i
∑2

j=1 λj sin(ωjt)]Û(t)d†σ, and the commu-
tation relation [aγ,kσ, Û(t)] = 0. We therefore obtain the
Hamiltonian H̃ by changing the time-dependent oscilla-
tion energy to the time-independent one as εd(t) → Ed,
and hence the coupling strengths become time-dependent

Rγk → R̃γk(t) = Rγk exp
[
− i

2∑

j=1

λj sin(ωjt)
]
. (2)

The terminals are considered as macroscopic electron
reservoirs which are described by the grand canonical en-
sembles when the terminals are uncoupled from the cen-
tral region. The current noise is determined by the current
fluctuation correlation as

Πγγ′(t, t′) = 〈δÎγ(t)δÎγ′ (t′)〉 + 〈δÎγ′(t′)δÎγ(t)〉, (3)

where δÎγ(t) = Îγ(t) − 〈Îγ(t)〉 is the current fluctua-
tion operator. The symbol 〈...〉 in above formula denotes
the quantum expectation over the electron state, and en-
semble average over the system. In order to obtain the
noise spectrum, we have to know the current operators in
the terminals. According to the continuity equation and
Heisenberg equation, we can find the operator of current
flowing into the QD from the γth lead. The current oper-
ator of the γth lead is expressed as

Îγ(t) = − ie

�

∑

kσ

[
R̃∗

γk(t)d†σ(t)aγ,kσ(t)−H.C.
]
. (4)

For the coupled system, the electron operators d†σ(t)
and aγ,kσ(t) are coupled to each other, and they are in
nonequilibrium state under the applied fields and source-
drain bias. In order to express the operator d†σ(t) in terms
of a†

γ,kσ(t), we employ the equation of motion method to
derive the separate operators self-consistently, and then
express the electron operators by the equilibrium electron
operators of terminals as the different parts of the system
are uncoupled. The electron operators can also be related
to the retarded and advanced Green’s functions of the
coupled QD. The coupled annihilation operator of elec-
tron in the γth lead can be derived from the Heisenberg
equation as

aγ,kσ(t) =
∫

dt1g
r
γ,k(t, t1)R̃γk(t1)dσ(t1) + âγ,kσ(t), (5)

where âγ,kσ(t) is the uncoupled annihilation operator
of electron in the γth lead as there is no tunnel-
ing at the initial time t0. We refer it as âγ,kσ(t) =
e−

i
�

Eγ,k(t−t0)âγ,kσ(t0) in the Heisenberg representation.
The Fermi distribution function f(Eγ,k) is given by tak-
ing the grand canonical ensemble as 〈â†

γ,kσâγ′,k′σ′〉 =

f(Eγ,k)δγγ′δkk′δσσ′ . In equation (5), gr
γ,k(t, t1) is the re-

tarded Green’s function of electron in the γth lead without
connecting to the QD. The coupled electron operator of
QD is derived through equation of motion as

dσ(t) =
∫

dt1g
r
d(t, t1)

∑

γk

R̃∗
γk(t1)aγ,kσ(t1) + d̂σ(t), (6)

where d̂σ(t) is the uncoupled annihilation operator of elec-
tron in the QD as there is no tunneling at the initial
time t0. We refer it as d̂σ(t) = e−

i
�

Ed(t−t0)d̂σ(t0) in the
Heisenberg representation. gr

d(t, t
′) is the retarded Green’s

function of the isolated QD in the absence of external
MWFs. To proceed, we define the retarded (advanced)
Green’s function of the coupled QD by G

r(a)
d (t, t′). Sub-

stituting the operator aγ,kσ given in equation (5) into the
operator dσ(t) stated in equation (6), and employing the
iteration procedure, we obtain the electron operator of QD
expressed by the coupled Green’s function of the QD as

dσ(t) =
∫

dt1G
r
d(t, t1)

∑

γk

R̃∗
γk(t1)âγ,kσ(t1). (7)

We have omitted the equilibrium operator of QD d̂σ(t)
in the above formula since it has no contribution to the
tunneling current. The retarded Green’s function Gr

d is de-
termined by the Dyson equation in the presence of MWFs.

Because we are interested in the multi-photon behav-
iors of tunneling current noise caused by MWFs, we con-
sider the wideband limit in the two leads. Substituting
the obtained electron operators into the current opera-
tor expressed in equation (4), and employing the property
of Bessel functions of the first kind Jn(λ) with the argu-
ments λ

e−iλ sin(ωt) =
∞∑

n=−∞
Jn(λ)e−inωt,

through straightforward derivation we find that the cur-
rent operator can be written in the following form

Îγ(t) =
e

h

∑

ββ1σ

∑

{nj ,mj}

∫
dε1dε2

2∏

j=1

Jnj (λj)Jmj (λj)

× Γββ1e
i
�
[ε1−ε2+Ω{ñ,m̃}�]tAγ

ββ1,{ñ,m̃}(ε1, ε2)

× â†
βσ(ε1)âβ1σ(ε2), (8)

where {nj, mj} = n1, m1, n2, m2 are integers ranging from
−∞ to ∞. In the formula, â†

βσ(ε1) and âβ1σ(ε2) are elec-
tron operators of terminals β and β1 at different ener-
gies ε1 and ε2 in equilibrium state as the different sub-
systems are disconnected from each other. The coefficient
Aγ

ββ1,{ñ,m̃}(ε1, ε2) is defined as

Aγ
ββ1,{ñ,m̃}(ε1, ε2) = iδβγGr

d(ε2−w{m̃})− iδβ1γGa
d(ε1−w{ñ})

− ΓγGa
d(ε1 − w{ñ}) × Gr

d(ε2 − w{m̃}).
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Since the summation
∑2

j=1 mjωj appears in the for-
mulas simultaneously, we have introduced the notations
Ω{ñ,m̃} and w{m̃} for writing the formulas concisely as
Ω{ñ,m̃} =

∑2
j=1(mj − nj)ωj and w{m̃} = �

∑2
j=1 mjωj .

One should understand these notations as entire symbols
relating to the integers mj and nj by the correspond-
ing indices m̃ and ñ. We employ these notations also in
the following formulas, and we have Ω{ñ,m̃} = −Ω{m̃,ñ},
w{ñ} = �

∑2
j=1 njωj . In addition, the following real-

ity relation holds Aγ
ββ1,{ñ,m̃}(ε1, ε2)

∗ = Aγ
β1β,{m̃,ñ}(ε2, ε1).

The Fourier transformed Green’s functions of the cen-
tral dot is determined by the Fourier transformed Dyson
equation from which one can find the retarded and ad-
vanced Green’s functions. Γββ1 is the line-width function
of terminals in the wideband limit defined by Γββ1(ε) =
2π

∑
k R∗

βkRβ1kδ(ε − Eβ,k). The lifetime of the system is
τ0 = 2/Γ (ε), where Γ (ε) = ΓL(ε) + ΓR(ε), and Γβ(ε) =
Γββ(ε). The retarded (advanced) Green function of the
QD is found to be G

r(a)
d (ε) = (ε − Ed ± i

2Γ )−1 in the
wideband limit. In the presence of ac fields, there exist
infinite channels in the QD for electrons in the terminals
to transport.

The current of γth lead is given by taking quantum
average over the compound quantum state and ensemble
average, Iγ(t) = 〈Îγ(t)〉. By employing the Fermi distri-
bution function of electrons fγ(ε) in the terminals, direct
derivation results in the time-evolving current tunneling
from the γth lead to the QD as

Iγ(t) =
2e

h

∑

β

∑

{nj ,mj}

∫
dε

2∏

j=1

Jnj (λj)Jmj (λj)Γβ

× eiΩ{ñ,m̃}tAγ
ββ,{ñ,m̃}(ε, ε)fβ(ε). (9)

The time-dependent current contains contributions from
the diagonal (nj = mj) terms and off-diagonal (nj �= mj)
terms. The off-diagonal components oscillate with time,
which represents the processes of nonequal absorption and
emission of photons from the jth field. The applied MWFs
can be divided into two kinds : (a) the two angular fre-
quencies ω1 and ω2 are independent on each other, which
is referred as the incommensurate case; (b) the two fre-
quencies possess the relation ω2/ω1 = q with q being an
integer, which is referred as the commensurate case. For
case (a), the time-averaged net tunneling current I is ob-
tained simply by letting mj = nj in the current formula
(9), and tunneling current is determined by the trans-
mission coefficient of electron Tγγ′(ε) by the Landauer-
Büttiker-like formula [45]. In the absence of external ac
fields, the transmission coefficient of electron tunneling
from the γ′ terminal to the γth terminal is defined by
Tγγ′(ε) = ΓγΓγ′ | Gr

d(ε) |2. For the commensurate case,
the time-averaged current is given by setting the sub-
scripts under the restriction n1 = m1 + (m2 − n2)q to

give the time averaged current in the γth terminal

Iγ =
2e

h

∑

β

∑

m1m2n2

∫
dεJm1(λ1)Jm1+(m2−n2)q(λ1)

× Jm2(λ2)Jn2(λ2)Tγβ(ε − w{m̃})
[
fγ(ε) − fβ(ε)

]
. (10)

The current conservation
∑

γ Iγ = 0 is satisfied in the
above formula. This current formula is equivalent to the
one derived from the approach of Jauho, Wingreen, and
Meir by employing the Keldysh Green’s function [41].

Substituting the current operator given in equation (8)
into the current fluctuation correlation formula defined by
equation (3), we encounter four electron operator correla-
tions related to the equilibrium state of electrons in the
terminals. The four electron operator correlations can be
written into the products of two pair-electron correlations
from the Wick’s theorem. This treatment results in the
current fluctuation correlation function

Πγγ′(t, t′) = 2
( e

h

)2 ∑

ββ1

∑

{nj ,mj}

∑

{n′
j ,m′

j}

∫
dε1dε2

×
2∏

j=1

Jnj (λj)Jmj (λj)Jn′
j
(λj)Jm′

j
(λj)ΓβΓβ1

× e
i
�
(ε1−ε2)(t−t′)ei[Ω{ñ,m̃}t+Ω{ñ′,m̃′}t′]

× Aγ
ββ1,{ñ,m̃}(ε1, ε2)A

γ′

β1β,{ñ′,m̃′}(ε2, ε1)

× Fββ1(ε1, ε2), (11)

where {nj, mj} = n1, n2, m1, m2; {n′
j , m

′
j} =

n′
1, n

′
2, m

′
1, m

′
2; w{m̃′} = �

∑2
j=1 m′

jωj. The summa-
tions over the integers n1, n2, m1, m2, n

′
1, n

′
2, m

′
1, m

′
2

range from −∞ to ∞. The function Fββ1(ε, ε1) in
the above formula is defined from the equilibrium
features of the electron reservoirs associated with
the Fermi distribution functions fβ(ε) by the form
Fββ1(ε, ε1) = fβ(ε)[1 − fβ1(ε1)] + fβ1(ε1)[1 − fβ(ε)]. This
function satisfies the relation Fββ1(ε, ε1) = Fβ1β(ε1, ε).
The correlation function given in equation (11) describes
the current correlation evolution procedure related to
the two times t and t′. The time-evolution is strongly
dependent on the quantities Ω{ñ,m̃} and Ω{ñ′,m̃′}, which
are composed of different ac fields. This correlation func-
tion is real, i.e., Πγγ′(t, t′) = Πγγ′(t, t′)∗, which can be
seen by taking the transformation over the subscripts as
nj → mj, n′

j → m′
j , and then by replacing the arguments

ε1 and ε2 in the Fourier space. We exchange the terminal
indices β and β1, by employing the symmetry relation of
Fββ1(ε, ε1), and comparing the quantity Πγγ′(t, t′) with
its complex conjugate Πγγ′(t, t′)∗ by employing the reality
relation of Aγ

ββ1,{ñ,m̃}(ε1, ε2). Therefore one finds that the
correlation function is real. From the definition of spectral
density of shot noise 1

2π Πγγ′(Ω, Ω′) = Sγγ′(Ω)δ(Ω + Ω′),
where Ω and Ω′ are the frequencies associated with the
Fourier transformation over times t and t′, one obtains
the noise formula by making Fourier transformation over
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equation (11)

Sγγ′(Ω) =
2e2

h

∑

ββ1

∑

{nj ,mj}

∑

{n′
j ,m′

j}

∫
dε

2∏

j=1

Jnj (λj)

× Jmj (λj)Jn′
j
(λj)Jm′

j
(λj)A

γ
ββ1,{ñ,m̃}(ε, ε̃{ñ,m̃})

× ΓβΓβ1A
γ′

β1β,{ñ′,m̃′}(ε̃{ñ,m̃}, ε)Fββ1(ε, ε̃{ñ,m̃}). (12)

We have defined the argument in the formula as ε̃{ñ,m̃} =
ε + �Ω{ñ,m̃} + �Ω. The energy conservation for the elec-
tron absorption and emission of photons during the elec-
tron tunneling procedure requires the constraint Ω{ñ,m̃}+
Ω{ñ′,m̃′} = 0. This condition results in the selection rule
for the numbers associated with absorption and emission
of photons as m1−n1+(m2−n2)q+m′

1−n′
1+(m′

2−n′
2)q =

0, where q is ratio of the two frequencies as q = ω2/ω1.
The situations for photon absorption and emission are
quite different for the commensurate and incommensurate
MWFs. The spectral density of shot noise can be written
in terms of the transmission coefficient by substituting the
relation Aγ

ββ1,{ñ,m̃}(ε, ε
′) defined by equation (8) into the

noise formula equation (12). Specifically, we consider the
spectral density of noise at Ω = 0, and finally we arrive
at the following expression

Sγγ(0) =
4e2

h

∑

{nj ,mj}

∑

{n′
j ,m′

j}

∫
dε

2∏

j=1

Jnj (λj)

× Jmj (λj)Jn′
j
(λj)Jm′

j
(λj)Tγγ′(ε − w{ñ})

× Tγγ′(ε − w{m̃′})
{

1
2

∑

β

Fββ(ε, ε̃{ñ,m̃})

+ Y{ñ},{m̃′}(ε)Fγγ′(ε, ε̃{ñ,m̃})
}

, (13)

for γ �= γ′, (γ, γ′ ∈ {L, R}). In the above formula, we
have defined the function as Y{ñ},{m̃′}(ε) = [(ε − w{ñ} −
Ed)(ε−w{m̃′}−Ed)+ 1

4Γ 2]/(ΓγΓγ′)−1. The first term con-
taining the function Fββ(ε, ε̃{ñ,m̃}) represents the thermal
noise perturbed by the ac fields, which in general devi-
ates from the equilibrium noise. According to the selection
rule, there exist different processes for electrons to absorb
and emit photons, and therefore we have different forms
of spectral density of noise. The second term containing
the function Fγγ′(ε, ε̃{ñ,m̃}), γ �= γ′, describes the photon-
assisted shot noise induced by both of the dc and ac biases.
Under the perturbation of MWFs, the electrons tunneling
in the channels ε = w{ñ} + Ed interfere with the electrons
tunneling in the channels ε = w{m̃′} + Ed. However, the
strengths of interference are weighted by the Bessel func-
tions corresponding to these channels. The concrete forms
of the Bessel functions are also dependent on the selec-
tion rule self-consistently. In the absence of the MWFs,
the noise spectral density reduces to the previously known
noise formula [25], which is zero as the source-drain bias

is removed at zero temperature. However, under the per-
turbation of MWFs, the noise is intimately dependent on
the matching-mismatching of side-bands of the ac fields. If
two side-bands related to different MWFs overlap, further
splitting of electron energy in the QD may cause shifting
of tunneling channels. Consequently, the enhancement or
suppression of shot noise may be generated due to the
way of fields application and controlling of external mech-
anism. In the follows, we examine the absorption and emis-
sion processes for the commensurate and incommensurate
MWFs concerning the noise spectral density of the left
terminal by S = SLL(0).

2.1 Incommensurate MWFs perturbation

For the incommensurate case, the frequency ratio q can be
any real number except integer. From the electron-photon
selection rule there are two possibilities for the numbers of
photon absorption and emission: one is the incommensu-
rate unbalanced case and the other is the incommensurate
balanced case.

For the balanced absorption and emission process, the
numbers reduced from the selection rule are restricted by
m2 = n2, m′

2 = n′
2, and m1 = n1, m

′
1 = n′

1, which is
the pseudo-equilibrium procedure. This procedure indi-
cates that the absorbed and emitted photons from the
ith MWF are conserved. This means that the photons
with the frequency ωi of the ith field irradiating to the
QD keep the same number of photons with the same
frequency after emission from the QD. The noise spec-
tral density for the incommensurate balanced case derived
from equation (13) takes the form by letting the subscripts
of the Bessel functions according to the above selection
rule. Therefore, the product of 8 Bessel function becomes
J2

n1
(λ1)J2

n′
1
(λ1)J2

n2
(λ2)J2

n′
2
(λ2). In this case, the noise for-

mula provides symmetric noise spectral density, and the
term related to thermal noise becomes zero as the temper-
ature approaches zero. The second term is nonequilibrium
noise which is nonzero at zero temperature, but it goes to
zero as the source-drain bias eV approaches zero at zero
temperature. The effect of external MWFs relates to the
symmetric photon-assisted tunneling, and the symmetric
modification of noise resonant peaks. The stair-like shot
noise is intimately related to the properties of the concrete
value of the real q.

The noise formula for the unbalanced absorption case
can be written out by considering the frequency ratio q
being arbitrary real for the incommensurate MWFs per-
turbation procedure according to the selection rule. This
case is associated with the nonequilibrium unbalanced ab-
sorption and emission of photons. Different from the bal-
anced case, the unbalanced photon absorption and emis-
sion are governed by the restriction as n′

1 = m1−n1 +m′
1

and n′
2 = m2 − n2 + m′

2 in equation (13). The quantity
q does not involves in the numbers of photon absorption
and emission, but it modifies the levels of QD through
the side-bands induced by the external MWFs. Since the
two fields possess no relation with each other, the levels of
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side-bands do not overlap with each other. These incom-
mensurate MWFs give rise to the kind of noise spectral
density deviated from the pseudo-equilibrium situation
by imposing the photon energies in the Fermi distribu-
tion functions. This behavior indicates that the absorbed
and emitted photon energies induce bias, which drives the
electrons tunneling through the system. The correlations
among the photon-assisted tunneling currents are nonzero
even if in the absence of source-drain bias eV at zero tem-
perature.

2.2 Commensurate MWFs perturbation

When the frequency ratio q of the two external MWFs
is an integer, the channels of the side-bands may overlap
with each other, and the perturbations of two commensu-
rate fields cause novel behaviors. In this case, the chan-
nels and Bessel functions are related to the frequency ratio
number (commensurate number) q, which leads to com-
plete novel behaviors associated with the balanced and
unbalanced absorptions of MWFs.

For the commensurate balanced absorption case, there
exists a pseudo-equilibrium balanced absorption process
according to the electron-photon selection rule that n1 =
m1 +(m2−n2)q, n′

1 = m′
1 +(m′

2−n′
2)q. The perturbation

of the two fields causes asymmetric side-bands weighted
with Bessel function. For this case, the absorbed photons
in one channel branch of current may be emitted to the
other channel branches. The conservation of the photon
energy and the correlation among branches of current lead
to the noise formula

S =
4e2

h

∑

m1m2n2

∑

m′
1m′

2n′
2

∫
dεJm1+(m2−n2)q(λ1)Jm1(λ1)

× Jm′
1+(m′

2−n′
2)q

(λ1)Jm′
1
(λ1)Jn2(λ2)Jm2(λ2)

× Jn′
2
(λ2)Jm′

2
(λ2)TLR(ε − w{m̃})TLR(ε − w{m̃′})

×
{

1
2

∑

β

Fββ(ε, ε) + Y{m̃},{m̃′}(ε)FLR(ε, ε)
}

. (14)

This balanced absorption case gives quite different noise
structure compared with the corresponding case for
the incommensurate fields perturbation. The common
properties for the two balanced cases is that at zero source-
drain bias, the shot noise becomes zero when the temper-
ature approaches zero. However, the asymmetric behav-
ior aroused from the perturbation of commensurate fields
contains more physical connotations in equation (14).

For the commensurate unbalanced absorption case,
there exists an unbalanced absorption according to the
electron-photon selection rule for the photon absorption
and emission numbers. The perturbation of external fields
makes the noise spectral density being nonequilibrium,
and the selection rule of the current noise is given by
n′

1 = m1 − n1 + m′
1 + (m2 − n2 + m′

2 − n′
2)q. In this case,

the noise spectrum is derived from equation (13) that

S =
4e2

h

∑

n1,n2

∑

m1,m2

∑

m′
1m′

2n′
2

∫
dεJn1(λ1)Jm1(λ1)Jm′

1
(λ1)

× Jm1−n1+m′
1+(m2−n2+m′

2−n′
2)q

(λ1)Jn2(λ2)

× Jm2(λ2)Jn′
2
(λ2)Jm′

2
(λ2)TLR(ε − w{ñ})

× TLR(ε − w{m̃′})
{1

2

∑

β

Fββ(ε, ε̃{ñ,m̃})

+ Y{ñ},{m̃′}(ε)FLR(ε, ε̃{ñ,m̃})
}

. (15)

The case of commensurate unbalanced absorption pos-
sesses the property of both heavy asymmetric structure
of noise and the nonequilibrium behavior of current cor-
relation. Multi-channel correlation associated with the
side-bands indicates multi-photon absorption and emis-
sion procedure. The noise is nonzero as the source-drain
bias is removed at zero temperature. Both of the thermal
noise and shot noise terms contribute to nontrivial noise
spectrum, and the overlapping circumstance may cause
novel noise behaviors in the nonlinear regime of applied
MWFs.

3 Numerical calculations

In this section we present the numerical calculations and
examine the behaviors of shot noise and differential shot
noise at zero temperature. We are interested in the situ-
ation that the system is perturbed by the commensurate
MWFs, in which the shot noise is associated with the com-
mensurate balanced photon absorption procedure shown
by equation (14), and the commensurate unbalanced pho-
ton absorption procedure determined by equation (15). As
two MWF’s are applied to the QD, the current splits to
form many branches. The different branch electron tunnel-
ing interference gives rise to total current. We deal with
the spin degenerate case because the system is not af-
fected by magnetic fields. The chemical potential of the
right lead µR is taken as the reference of energy in differ-
ent parts. Ed is the measured energy of QD, which can
be expressed by the gate voltage Vg as Ed = E0 + eVg,
and we set E0 = 0 without loss of generality. We define
the scale of shot noise by S0 = 4e2∆/h, where the photon
energy of one field ∆ = �ω1 is taken as the energy mea-
surement scale. At zero temperature, the thermal noise
becomes zero, and only the shot noise remains due to the
presence of source-drain bias and the perturbations of ac
fields. The symmetric coupling system ΓL = ΓR = Γ/2 is
considered throughout the numerical calculations. To ap-
ply the free electron single-level QD model experimentally,
the frequencies of the imposed signals should be restricted
in order not to cause level crossing due to the applied
fields. The frequencies can be chosen from the radio fre-
quency (RF) (about 1MHz) to the microwave frequency
(about 40 GHz) for a relatively large QD. Such system
is composed by the etched narrow wire with width 0.8 µ
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Fig. 1. The shot noise S versus gate voltage for the com-
mensurate unbalanced absorption. In diagram (a), we show
the behaviors of noise as q = 2, and λ1 = λ2 = 0.8. The
solid, dotted, and dash-dotted curves are related to the pa-
rameters Γ = 0.2∆, Γ = 0.8∆, Γ = 0.6∆ correspondingly
at eV = 0. Diagram (b) displays the characteristics of the
shot noise as Γ = 0.2∆, and eV = 0.8∆. The other pa-
rameters are chosen as λ1 = λ2 = 0.8, q = 2 for the dash-
dotted curve;λ1 = 0.8, λ2 = 1.6, q = 1 for the dotted curve;
λ1 = 0.8, λ2 = 1.6/3, q = 3 for the solid curve.

widening into source and drain 2DEG region, which con-
tains roughly 100 electrons and is weakly coupled to the
source and drain [1,14]. The charging energy is usually in
the regime as U ≈ 0.2 ∼ 2 meV. However, for a relatively
small QD with the two-dimension confined in the regime
about 70 nm, the level space between the first level to the
bottom of the QD is about 0.5 meV. The Coulomb inter-
action U ≈ 2.7 meV. Such small QD contains about 20
electrons [46]. In this paper, we choose the photon energy
∆ = �ω1 as the measurement energy scale, and we take it
as ∆ = 0.02 meV, (frequency ν ≈ 4.85 GHz). Other energy
quantities are compared with it, and the nonlinear effects
are involved in the system by taking the energy regime of
the other quantities as 0 ∼ 10∆. We assume the magni-
tudes of the ac fields possess the relation eV2 = 2eV1, so
that the arguments of the Bessel functions λi(i = 1, 2) are
given by λ1 = eV1/∆, and λ2 = 2λ1/q. In the numerical
calculations we take the line-width Γ < ∆, which is in the
nonadiabatic regime of the mesoscopic tunneling.

Figure 1 displays the resonance of shot noise versus
gate voltage Vg under the perturbation of commensurate
MWFs for the unbalanced case. The asymmetric behav-

iors of the shot noise in Figure 1a show the absorption
and emission of photons as the two commensurate fields
irradiate to the QD in the absence of source-drain bias
eV . This signifies that the numbers of photon absorption
and emission are not equal, which means the absorbed
photons from one field may be emitted to the other field.
The detailed resonant behaviors are strongly related to the
line-width of the system, and the asymmetry is more ev-
idently shown in the obvious quantum regime as Γ � ∆.
The magnitude of shot noise is larger with a larger mag-
nitude of line-width Γ . This kind of shot noise is con-
tributed by purely photon absorption effect, in which both
of the photon induced terminal fluctuation and photon-
electron pumping effect play important roles. This shows
that shot noise is strongly dependent on the ac fields, how-
ever the time-averaged tunneling current is zero in the ab-
sence of source-drain bias whenever the ac fields are ap-
plied through the gate of QD. Several steps displayed in
each side of the resonant peak indicate the multi-photon
absorption and emission processes. Since the spectral den-
sity of shot noise is constructed from the correlations of
two currents at different times, the absorbed photons car-
ried by one of the currents will be emitted to the other
current due to the current correlation according to the
selection rule. For the commensurate MWFs perturbed
system, the selection rule is governed by the frequencies
of the commensurate fields stated by the integer q. There-
fore, different commensurate number q contributes to dif-
ferent photon absorption and emission processes, and we
obtain different resonant structures of shot noise shown
in Figure 1b. The switching on of source-drain bias sup-
presses the magnitude of shot noise, but it strengthens the
symmetric structure of the shot noise. The commensurate
number q does not affect the magnitude of the shot noise
obviously.

We show the variation of shot noise with respect to
the source-drain bias eV for the commensurate unbal-
anced photon absorption and emission processes in Fig-
ure 2. The shot noise exhibits symmetric inverse resonant
behavior versus source-drain bias eV in the absence of
MWFs shown by the dotted curve in Figure 2a. It is zero
as eV = 0, and it increases to its saturated value 0.3S0

by increasing the absolute value of the source-drain volt-
age. This behavior shows the nonequilibrium feature of
shot noise. As we apply a single MWF on the QD, the
shot noise is nonzero due to the photon-assisted current
correlations (solid curve). This kind of noise has been dis-
cussed by Büttiker et al. in references [8,25]. It should
be pointed out that as MWFs apply to the QD system
through its gate, the time-averaged tunneling current is
zero in the absence of source-drain bias since the pho-
ton pumped electrons from the QD to the two leads are
equal. The nonzero shot noise arises from the current cor-
relation of unbalanced absorption and emission processes.
For the double commensurate MWFs applied system, the
shot noise is large enough to surpass its saturated value
due to the unbalanced absorption and emission procedures
(dash-dotted curve). We depict the shot noise with respect
to the source-drain bias under the perturbation of two
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Fig. 2. The shot noise S versus source-drain bias eV as eVg =
0. In diagram (a), the parameters are chosen as Γ = 0.8∆,
and the dash-dotted curve is associated with λ1 = λ2 = 0.8,
q = 2 for the commensurate unbalanced case; the solid curve
is associated with λ1 = 0.8, λ2 = 0 for the single field ap-
plied system; the dotted curve corresponds to λ1 = λ2 = 0.
Diagram (b) shows the commensurate unbalanced case as
Γ = 0.2∆,λ1 = 0.8, λ2 = 2λ1/q. The dash-dotted, solid, dotted
curves correspond to q = 1, 2, 3, respectively.

commensurate MWFs for different commensurate num-
ber q in Figure 2b as the line-width Γ = 0.2∆, which is
in the nonadiabatic regime. The shot noise contains reach
structure as the source-drain bias is small | eV |< 4∆, and
the detailed photon-assisted behaviors disappear when the
source-drain bias becomes large enough | eV |> 4∆. The
quantum behaviors induced by the photon absorption and
emission become more evident with a smaller Γ . The dash-
dotted curve represents the shot noise as q = 1, which is
much larger around eV = 0 than that of the saturated
value when | eV |> 4∆. One observes that the shot noise
is split as q = 2, and the splitting becomes heavier when
q = 3. This situation is associated with the inverse reso-
nance of photon channel suppression, and the positions of
suppression valleys are located at absorbed and emitted
photon energies n∆.

The behaviors of shot noise for the commensurate bal-
anced absorption and emission procedure is displayed in
Figure 3, which appears quite differently from the com-
mensurate unbalanced cases. The shot noise for the com-
mensurate balanced case is zero as eV = 0, which is analo-
gous to the equilibrium situation. The shot noise increases
as the absolute value of source-drain bias eV increases,
and stair-like behavior appears. The solid and dash-dotted

Fig. 3. The shot noise versus source-drain bias eV for the
commensurate balanced case. The parameters are chosen as
Γ = 0.2∆, eVg = 0, and for the solid curve λ1 = λ2 = 1.5,
q = 2; for the dash-dotted curve λ1 = λ2 = 0.8, q = 2; for the
dashed curve λ1 = 1.5, λ2 = 1.0, q = 3; for the dotted curve
λ1 = 1.5, λ2 = 3.0, q = 1.

curves are associated with the cases as q = 2 but with dif-
ferent λi. Multi-photon absorption procedure takes place
as the biases of MWFs are strong (eV1 = 1.5∆, eV2 =
3.0∆), and the magnitude of the shot noise is suppressed
more heavily as compensation. The asymmetric curves in-
dicate that the property of shot noise is different in dif-
ferent regimes as eV > 0 and eV < 0. The number of
steps is related to the absorbed and emitted multi-photon
energies. As q = 1 and q = 3, λ1 = 1.5, but with dif-
ferent λ2, we find that the shot noise is suppressed to
exhibit a gap which is about 4.6∆ for the case q = 1,
and the noise approaches symmetric structure. The mag-
nitude of shot noise strongly relies on the strengths of λi.
The width of valley is dependent on the commensurate
number q and together with λi. The noise gap for the
case q = 1 indicates that the side channels n = ±1,±2
have been blockaded originated from the multi-photon ab-
sorption and emission. The magnitude of shot noise at
pth channel associated with the side-band p∆ is weighted
by J4

p (Λ) according to equation (14) due to the contri-
bution of multi-photon absorption and emission, where
Λ = λ1 + λ2 and p is an integer related to the absorption
and emission of photons. One observes that the weight is
associated with J4

1 (4.5) ≈ J4
2 (4.5) ≈ 2.5 × 10−3 for the

dotted curve. The noise of channel p∆ will be completely
suppressed if Λ is a zero of the Bessel function Jp(Λ). Sim-
ilar channel blockade exists in the differential conductance
and tunneling current, and we will discuss it later on the
differential conductance.

We present the differential shot noise for the commen-
surate unbalanced absorption and emission case in Fig-
ure 4 to investigate the detailed structure of shot noise
clearly. The Fano-like behaviors are exhibited for different
commensurate number q, and the positions of peaks and
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Fig. 4. The differential shot noise versus source-drain bias
eV for the commensurate unbalanced case. The parameters
are chosen as Γ = 0.2∆, eVg = 0. In diagram (a), the other
parameters for the solid curve are λ1 = 0.8, λ2 = 1.6 q = 1; the
other parameters for the dotted curve are λ1 = λ2 = 0.8 for
q = 2. Diagram (b) displays the curves for q = 3. The dotted
curve is associated with λ1 = 0.8, λ2 = 1.6/3; the solid curve
is associated with λ1 = 1.8, λ2 = 1.2.

valleys are located at the absorbed and emitted photon
numbers related to the photon energy n∆. It is clearly
recognized that the structure of different shot noise re-
flects the multi-photon irradiation of the two fields, and
the positive-negative behaviors appear in both of the pos-
itive and negative values of eV . The Fano behavior is ev-
idently exhibited for the cases with q = 2, 3 shown by
the dotted curves in diagrams (a) and (b). However, this
structure is smeared by increasing the magnitudes of λ1

and λ2 shown by the solid curve of diagram (b). We also
noted that the structures of differential shot noise is quite
different for case q = 1 from the cases for q = 2, 3. The
central regime of dS/dV for the case q = 1 is related to the
plateau of the dash-dotted curve in Figure 2b, while the
peak-valleys of the dotted curves in Figure 4 at eV = 0
are related to the valleys of solid and dotted curves of
Figure 2b.

The differential shot noise for the commensurate bal-
anced absorption and emission case is depicted in Fig-
ure 5. One observes that the Fano-like peak and valley
behavior is displayed around eV = 0. The differential shot
noise dS/dV is positive as eV > 0, and it is negative as
eV < 0. The multi-photon absorption and emission pro-
cedure causes the splitting of peak and valley structure.
Since the magnitude of dS/dV is larger enough for q = 2, 3
in Figure 5a, the side structure of it is suppressed to rela-

Fig. 5. The differential shot noise versus source-drain bias
eV for the commensurate balanced case. The parameters are
chosen as Γ = 0.2∆, eVg = 0. Diagram (a) corresponds to
λ1 = λ2 = 0.8, q = 2 for the solid curve; λ1 = 0.8, λ2 = 1.6/3,
and q = 3 for the dotted curve. Diagram (b) corresponds to
λ1 = 0.8, λ2 = 1.6, q = 1 for the solid curve; λ1 = 1.8, λ2 = 1.2,
and q = 3 for the dotted curve.

tively small values. As λ1 = 0.8, λ2 = 1.6, the magnitude
of dS/dV is small so that the detailed structure of it is
seen obviously in Figure 5b by the solid curve for q=1.
The multiple peaks and valleys are related to the multi-
photon assisted shot noise, and the positions of peaks and
valleys are associated with the steps in the shot noise com-
pared with Figure 3. We also present the curve for the
case where q = 3 but with large magnitudes of λi shown
by the dotted curve of diagram (b). One observes that the
differential shot noise is suppressed by increasing the mag-
nitudes of λi, and its shape is modified by increasing the
fields. The smeared shot noise in the regime eV < 0.5∆ is
arisen from the suppression of central channel due to the
multi-photon absorption.

The differential conductance at zero temperature for
the double commensurate fields applied system is given
by the formula

dI

dV
= G0

∑

m1m2n2

Jm1(λ1)Jm1+(m2−n2)q(λ1)

× Jm2(λ2)Jn2(λ2)TLR(eV − w{m̃}), (16)

where G0 = 2e2/h. We display the differential conduc-
tance of the system perturbed by two commensurate
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Fig. 6. The differential conductance versus source-drain bias
eV for the commensurate fields applied system. The param-
eters are chosen as Γ = 0.2∆, eVg = 0. In diagram (a),
λ1 = λ2 = 0.8, and q = 2 for the solid curve; λ1 = 0.8, λ2 = 1.6,
and q = 1 for the dotted curve. In diagram (b), λ1 = λ2 = 1.8,
and q = 2 for the solid curve; λ1 = 1.8, λ2 = 3.6, and q = 1
for the dotted curve.

MWFs in Figure 6 to compare the differential behaviors
of shot noise by employing equation (16). Figure 6a repre-
sents the conductance under the irradiation of MWFs with
the commensurate numbers q = 1 and q = 2 as λ1 = 0.8.
We see that the multi-peaks are located at the absorbed
and emitted photon numbers n, and the resonant struc-
ture exhibits asymmetric configuration about eV for the
case of q = 2. The heights of peaks do not decline as eV in-
creases as usual for the system perturbed by single MWF,
but the peak at n = 1 is smaller than the peak at n = 2 for
the solid curve. This suppression of peak results from the
common effects of the applied two commensurate fields.
However, for the case with commensurate number q = 1,
the differential conductance appears symmetric behavior,
and the multiple resonant behavior is exhibited evidently
by the dotted curve. The two commensurate fields with
the same frequency causes more elegant resonant struc-
ture, and the central peak is suppressed. This means that
in the absence of MWFs, there exists a resonant peak lo-
cated at eV = 0, but the conductance peak becomes a val-
ley of two peaks with the energy gap about 2∆. We refer it
as the channel blockade due to multi-photon irradiation.
This effect can be realized by analyzing the conductance
formula given by equation (16). For the double fields ap-
plied system, many photon absorption and emission may
contribute to the channel Ed + p∆ under the requirement
w{m̃} = (m1+m2q)∆ = p∆ in equation (16), where p in an

integer representing the rearranged resonant channels due
to the applied ac fields within the regime −∞ < p < ∞.
This condition gives the relation m2 = p − m1 for the
commensurate fields applied system as q = 1. Substitut-
ing this relation into equation (16) we have conductance
magnitude of the pth side photon level G̃ = dI

dV |p as

G̃ = G(p)
[ ∑

m1

Jm1(λ1)Jp−m1(λ2)
]2

, (17)

where G(p) = G0TLR(eV − p∆). Employing the sum
rule for the Bessel functions of the first kind, we ob-
tain the exact expression related to the Bessel function by
G̃ = G(p)J2

p (Λ), where Λ = λ1+λ2. We therefore find that
if Λ is a zero of the Bessel function Jp(Λ), i.e., Jp(Λ) = 0,
we have the zero conductance at the pth side photon level
p∆ whenever the original conductance is. This means that
if the system possesses a channel at Ed, the multi-photon
absorption procedure makes this channel to be blockaded.
In fact, Λ ≈ 2.4048 and Λ ≈ 5.5201 are the two zeros of
J0(Λ). Actually, the parameters of the dotted curve in di-
agram (a) is λ1 = 0.8, λ2 = 1.6, and hence λ1 + λ2 = 2.4
is a zero of the Bessel function J0(Λ). Therefore, the origi-
nal channel Ed = 0 is blockaded to form zero conductance
at eV = 0. As the magnitudes of the fields increase to
λ1 = 1.8 and λ2 = 3.6, the magnitude Λ = 5.4 approaches
to another zero of the Bessel function J0(Λ), we there-
fore obtain the conductance shown by the dotted curve
in diagram (b) for q = 1. For this case the zero channel
of the field is also blockaded. The side peaks are larger
than the central peaks, however the symmetric structure
remains. As the magnitudes of the fields λ1 and λ2 are
large (λ1 = λ2 = 1.8), one observes that the differential
conductance for the case as q = 2 is modified considerably
compared with the solid curve in diagram (a). The cen-
tral peak is suppressed to a small value,and many novel
side peaks appear asymmetric structure. Compared with
the differential shot noise of the systems for the cases of
commensurate unbalanced case shown in Figure 4, and
the commensurate balanced case shown in Figure 5, one
recognizes that the differential shot noise and differential
conductance behaves quite differently.

The magnitude of each resonant conductance peak is
contributed by absorbing and emitting many photons of
the two fields, and the compound effect makes the sup-
pression and enhancement of the resonant peaks. The
photon-blockade effect is evidently seen to exhibit sym-
metric structure, and the conductance is weighted by
J2

p (Λ) shown in Figure 7. One observes that the conduc-
tance can be completely suppressed by the two fields for
the case q = 1, and magnitude of the conductance may
have several zeros as long as Λ is large enough. Therefore,
we can adjust the amplitudes of the applied two fields
as the switches to make a channel open or close through
photon-blockade effect.

The Fano factor F = S/2eI is defined to classify the
Poissonian F = 1, sub-Poissonian F < 1, and super-
Poissonian F > 1 shot noise compared with the Schottky
formula. In Figure 8 we present the Fano factor F with
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Fig. 7. The conductance weight J2
p (Λ) of system for q = 1.

The parameter Λ = λ1+λ2 controls the heights of the resonant
peaks. The zeros of the curves are associated with the photon-
blockade of the system. The dotted, solid, and dash-dotted
curves are related to the magnitudes of the peaks located at
p = 0,±1,±2, respectively.

respect to the source-drain bias eV for the commensurate
balanced cases. The Fano factor increases from zero by in-
creasing the source-drain bias to reach one of its extreme
value, and then it declines to a valley. Several extreme
values may exist in the larger region of source-drain bias.
The detailed structure of Fano factor is sensitive to the
commensurate number q of the system. We show the con-
crete behavior of the Fano factor in Figure 8a for different
commensurate number q = 1, 2, 3. As q = 1, the Fano fac-
tor varies mildly in the region 0.4∆ < eV < 2.6∆, but
it increases abruptly as 2.6∆ < eV < 3.5∆. However, for
the case as q = 3, the Fano factor varies rapidly in the
region 0.4∆ < eV < 1.5∆. The maximum value of the
Fano factor also increases as q increases, say F ≈ 0.06
for q = 1; F ≈ 0.084 for q = 2; F ≈ 0.1 for q = 3.
We show the Fano factor with respect to the source-drain
bias eV for choosing different values of line-width Γ in
Figure 8b. One observes that the Fano factor is larger as
the line-width Γ is larger in the region of source-drain
bias 0 < eV < 3.0∆, but it is smaller as the line-width
is smaller in the region eV > 3.0∆. Since the Fano factor
for the commensurate balanced absorption and emission
system is smaller than one, the shot noise of this case
belongs to the sub-Poissonian type of shot noise. The sen-
sitive behaviors of Fano factor associated with different
commensurate number, line-width, and the amplitudes of
ac fields signify that the shot noise and tunneling current
behave quite differently.

The Fano factor versus gate voltage Vg for the com-
mensurate balanced and unbalanced absorption and emis-
sion procedures is displayed in Figure 9a and 9b, respec-
tively. The dotted, solid curves in Figure 9a are depicted to
associate with the commensurate number q = 1, 2, respec-
tively. The Fano factor is smaller than one, and it exhibits
rich concrete resonant structure related to eVg for the bal-
anced case. Different system under specific commensurate

Fig. 8. The Fano factor versus source-drain bias eV for the
commensurate balanced case. The parameters in diagram (a)
are chosen as Γ = 0.2∆, λ1 = 1.5, λ2 = 2λ1/q, and for the
solid curve q = 1; for the dash-dotted curve q = 2; for the
dotted curve q = 3. The parameters in diagram (b) are chosen
as q = 2, λ1 = λ2 = 0.8, and for the solid, dotted, and dash-
dotted curves Γ = 0.2∆, 0.5∆, 0.7∆, respectively.

number q displays different configuration. The asymmetric
behavior is strongly related to the commensurate number
q, which indicates that we can suppress the shot noise by
adjusting the commensurate number q and the gate volt-
age Vg even as the source-drain bias is large. The Fano
factor for the commensurate unbalanced case can surpass
one displayed in Figure 9b, i.e., the shot noise of this sys-
tem can be located in the regime of super-Poissonian. The
height of resonant peak is F ≈ 14.2 for the system as
q = 1, eV = ∆. For the system as q = 2, and eV = ∆,
we have the height of resonant peak F ≈ 5.6. In fact, the
Fano factor for the commensurate unbalanced absorption
and emission case is very large as the source-drain bias
approaches zero. The cause of this situation is that as the
source-drain bias eV → 0, the shot noise reaches a definite
value due to the correlations of photon-assisted tunneling
currents shown in Figure 2. However, the time-averaged
tunneling current approaches zero as eV → 0 for our cou-
pling system. The Fano factor is calculated from the shot
noise divided by the tunneling current. Thus, if the cur-
rent is small enough we can obtain the circumstance as
F 
 1.

4 Concluding remark

We have investigated the shot noise affected by the pertur-
bation of two MWFs, which can be classified as the com-
mensurate and incommensurate external ac fields. The
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Fig. 9. The Fano factor versus gate voltage Vg for the com-
mensurate balanced and unbalanced cases. The parameters are
chosen as eV = 1.0∆, and Γ = 0.2∆. In diagram (a), λ1 = 1.5,
λ2 = 2λ1/q, and the dotted, solid curves are related to q = 1, 2,
respectively. In diagram (b) λ1 = 0.8, λ2 = 2λ1/q, and the dot-
ted, solid curves are related to q = 1, 2, respectively.

current operator in the presence of external MWFs is de-
rived using the equation of motion method, from which
the device characteristics can be calculated, and the prop-
erties of applied fields, terminal features are involved in
it. The current correlation function has been derived by
evaluating their expectation and quantum average values.
These current formula and current correlation functions
are very different from the ones of single field applied sys-
tem, which are nontrivial both for the tunneling current
and the current noise. The current and the current-current
correlations appear versatile oscillation due to the current
branch interference and the applied ac fields. The shot
noise spectral density is derived generally to fit the arbi-
trary applied double MWFs irradiating on the QD. The
selection rule is found by considering the energy conserva-
tion associated with photon absorption and emission pro-
cedures during electrons transport through the system.
This means that the MWFs irradiate the QD by trans-
ferring photon energy to the electrons in the QD, and
the summation of absorbed photon energies from the two
fields by the two correlated currents is equal to the emit-
ted photon energies from the two correlated currents to the
two MWFs. In order to obtain stable current correlations,
several procedures may exist in the double MWFs irradi-
ated system depending on the commensurate and incom-
mensurate fields. The detailed approaches of absorption

and emission of photons induce different kinds of noise
spectral density. We have focused on the circumstance
that the system is perturbed by the commensurate MWFs.
Due to the perturbation of MWFs, the electron energy of
the QD splits to form side-bands, and each corresponding
side-channel is weighted by a Bessel function. The double
commensurate MWFs may induce channel overlapping be-
tween different side-bands, and the weight functions pro-
duce unbalanced behaviors. From the selection rule, we
find that the commensurate number q is involved in the
numbers of absorbed and emitted photons by the restric-
tion m1 + m′

1 + (m2 + m′
2)q = n1 + n′

1 + (n2 + n′
2)q. For

this situation, m1 + m′
1 and n1 +n′

1 are the absorbed and
emitted photon numbers in one field respectively, while
(m2 + m′

2)q and (n2 + n′
2)q are the effective absorbed and

emitted photon numbers in the other field respectively by
taking one frequency ω1 as the common frequency factor.
This restriction also induces further asymmetrical behav-
ior due to involving the tunneling weight functions asso-
ciated with the Bessel functions in which the commen-
surate number q takes important role. The enhancement
and suppression of photon-assisted noise spectral density
therefore explicitly exhibited.

We have performed the numerical calculation for the
cases of commensurate balanced and unbalanced photon
absorption and emission based on the noise formulas given
by equations (14) and (15). Different from the single MWF
applied system, the quantum coherent current induces
rich quantum correlation, and current noise is strongly
affected by the external fields to exhibit different quan-
tum structures. It is a consequence of the multi-photon
absorption and emission procedure among different waves
of electrons. The multi-photon process can be obviously
seen from the resonance of shot noise, or from the dif-
ferential conductance. Different commensurate number q
contributes to different photon absorption and emission
behaviors. The behaviors of commensurate balanced and
unbalanced procedures result in quite different noise spec-
tral density. For the balanced absorption procedure, the
shot noise is zero in the absence of source-drain bias, and
it increases as the absolute value of source-drain bias eV
increases to exhibit stair-like behavior. For the double
commensurate MWFs applied system, the shot noise is
large enough to surpass its saturated value due to the un-
balanced absorption and emission procedures. The shot
noise contains rich structure as the source-drain bias is
small, and the detailed photon-assisted behaviors disap-
pear when the source-drain bias becomes large enough.
The quantum behaviors induced by the photon absorption
and emission become more evident as Γ becomes smaller.
The sensitive behaviors of Fano factor associated with dif-
ferent commensurate number, line-width, and the ampli-
tudes of ac fields signify that the shot noise and tunneling
current behave quite differently. The shot noise related to
the case of commensurate balanced absorption and emis-
sion belongs to the sub-Poissonian. The asymmetric be-
havior is strongly related to the commensurate number q.
The Fano factor for the commensurate unbalanced case
can surpass one. In fact, if the current is small enough
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the Fano factor can be much larger than one. This kind
of shot noise belongs to super-Poissonian.

The magnitude of differential conductance shows the
nonlinear behavior of the system clearly due to the ap-
plication of two commensurate fields. For the case with
commensurate number q = 1, the differential conductance
appears symmetric behavior, and the channel blockade ex-
hibits due to the multi-photon absorption procedure. The
noise possessing a gap for the commensurate balanced case
as q = 1 indicates that the channel blockade takes place.
We can adjust the amplitudes of the applied two fields to
switch the channels through photon-blockade effect. Phys-
ically, the photon blockade effect can be understood by the
situation that the applied two fields with the same fre-
quency induce voltages on the gates. The voltages on the
gates take the role for controlling the photon resonant con-
ductance. The switching on and off the photon resonant
conductance can be controlled exactly by changing the
magnitudes of the applied potentials on the gate, i.e., as
Λ = λ1 +λ2 is equal to one of the zeros of the Bessel func-
tion Jp(Λ), the photon resonant conductance peak at p∆
is blockaded completely, and there is no electron tunneling
in this channel. This effect allows us to contrive a photon-
assisted electronic device to control the photon-electron
tunneling channel exactly by adjusting the applied po-
tential of ac fields. However for the case where q > 1,
the peak suppression and enhancement induce asymmet-
ric nonlinear differential conductance. We have compared
the results with corresponding quantities in the system
perturbed by single MWF, and realized that the system
with double frequencies possesses richer physical behav-
iors than the one with single frequency. Our investigation
involves the nonlinear and nonadiabatic photon-assisted
transport, through which one recognizes that the multi-
photon effects are important and many novel physically
interested phenomena are contained in the compound sys-
tem as the fields are strong.
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42. P.S.S. Guimarães et al., Phys. Rev. Lett. 70,3792 (1993)
43. A.P. Jauho, N.S Wingreen, Phys. Rev. B 58, 9619 (1998)
44. Z. Ma, Y. Zhu, X.Q. Li, T.H. Lin, Z.B. Su, Phys. Rev. B

69, 045302 (2004)
45. R. Landauer, IBM J. Res. Dev. 1, 223 (1957); M. Büttiker,
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